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A quasistatic model of the evolution of
an interface inside a deformed solid�
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Abstract

A one-dimensional integral equation, the solution of which enables one to follow the (small and continuous) change in the form
of the interface as a function of a time-like loading parameter, is derived by constructing a formal trinomial asymptotic form of the
elastic fields. The operator and other data of the equation are expressed in terms of the Steklov-Poincaré operators for separated
phases at the initial instant and the solutions of the problem with a fixed interface. An investigation of the equation establishes
the stability of the development and the possibility of bifurcations or the need to take dynamic effects into account. A well-known
thermodynamic condition at the interface and a new condition of its classical stability are obtained as a special case.
© 2006 Elsevier Ltd. All rights reserved.

1. Formulation of the quasistatic problem

Consider a plane elastic body �, the internal part of which Ω+
t has undergone a phase transition. We will assume

that the boundary �t between the two phases is a simple smooth closed contour, having no common points with the
boundary ∂� of the body itself. Here Ω+

t is the region bounded by the contour �t, and Ω−
t = Ω\(Ω+

t ∪ Γt). To simplify
the formulation of the problem we will assume that the body is rigidly clamped along the non-empty open arc γ ⊂ ∂Ω.
The following external forces are applied to the remaining part � of the boundary ∂�

(1.1)

Here t is a dimensionless time-like parameter of the loading, non-negative and monotonic with respect to real time.
The rate of change of the parameter t is assumed to be small compared with the propagation velocities of elastic waves,
referred to the characteristic dimension of the composite body. The latter fact enables us justifiably to neglect the
inertial terms and ensures a quasistatic formulation of the problem of the evolution of the interface, in which, for a
known initial contour �0, it is required to obtain its position �t for t > 0.

For each t ≥ 0 the displacement vector ut, the strain tensor �t and the stress tensor �t, connected by the linear
relations

(1.2)

� Prikl. Mat. Mekh. Vol. 70, No. 3, pp. 458–472, 2006.
E-mail address: serna@snark.ipme.ru.

0021-8928/$ – see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2006.07.002

mailto:serna@snark.ipme.ru
dx.doi.org/10.1016/j.jappmathmech.2006.07.002


S.A. Nazarov / Journal of Applied Mathematics and Mechanics 70 (2006) 416–429 417

satisfy homogeneous equilibrium equations (there are no mass forces), and also the boundary conditions on the external
boundary and the matching conditions (ideal contact) at the interface

(1.3)

(1.4)

(1.5)

Moreover A(x) = A± are Hooke tensors for the phases Ω±
t , summation is carried out over repeated indices j = 1, 2,

[v] = v+ − v− is the jump in the function v on �t, νt = (νt
1, ν

t
2) and n = (n1, n2) are the unit vectors of the outward

normals on �t (relative to the regions enveloped by the contours) and ∂Ω ∪ Γ0, in particular ν0 = n on �0. In view of
the presence in (1.4) of the Dirichlet conditions, problem (1.3)–(1.5) is uniquely solvable for all t ≥ 0 and gt ∈ L2(Σ)2

irrespective of the dependence on the position of the interface (the condition imposed on the vector function gt may be
reduced). The solution ut ∈ H1(Ω)2 turns out to be infinitely differentiable inside the regions Ω±

t , and for a continuous
right-hand side of the first condition (1.4) also on the open arc � but not at its end points. On the continuous contour
�t there are unilateral derivatives of the displacements ut of any order.

The position and shape of the contour �t is determined from the following requirement (compare with Refs. 1–3
etc.): at any instant t ≥ 0 the functional

(1.6)

calculated when solving problem (1.3)–(1.5), takes the least value compared with the other possible positions of
the interface. In equality (1.6) Ut is the potential strain energy, stored by the composite body Ωt :=Ω+

t ∪ Ω−
t ,

(1.7)

(1.8)

Moreover, mes2Ω
±
t is the area of the figure Ω±

t , Et is the elastic energy, Rt is the work done by external forces and
γ±
t is the energy density of the unstrained state (usually γ±

1 = γ±
2 = 0). In formula (1.7) a scalar product of vectors is

denoted by a dot and the convolution of tensors is denoted by a colon.
In this paper the complex mathematical problem of simultaneously finding the interface and elastic field (the

existence and uniqueness of the solution and the smoothness of the boundaries and fields) is not touched upon (in this
connection see, for example, Ref. 3). It is assumed that the solution at the initial instant t = 0 is known and possesses
the required properties. As a result of formal asymptotic analysis, functional (1.6) and differential problem (1.3)–(1.5)
are replaced by an asymptotic approximation to Ut and the corresponding Euler equation, which generate an integral
operator on the contour �0. The latter is also the object of the investigation. This also applies to the problem with
surface energy mentioned in Section 7, where an additional integral over the arc �t is introduced into functional (1.6).
The main assumptions for which these substitutions generally make sense are smoothness, closure and simplicity of
the contour separating the phases. Note that in the case of continuous test functions, the first and second variations of
the functional (1.6) itself are identical with the analogous variations of its asymptotic approximation.

In Sections 3 and 4 we construct three terms of the asymptotic form of the solution of problem (3)–(5) with respect
to the parameter t and the function h, unknown in advance, which specify the perturbation of the contour �0 (see later
formulae (2.1) and (2.5)). As in the problem of the propagation of a plane crack in a brittle elastic solid within the
framework of the Griffith energy criterion (see Refs. 4–6), the quasistatic model arises as a result of replacing functional
(1.6) by its quadratic approximation

(1.9)
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obtained using the asymptotic form mentioned above. The second term U(1)(h) depends linearly on h, and hence
functional (1.9) may reach a minimum for a small variation of the contour �0 only in the case of the relation (3.8)
between the fields σ0± = σt±|t=0 and ε0± = εt±|t=0 on �0. This relation, known as the thermodynamic condition at
the interface (see Refs. 1–3 etc.), is the necessary condition for functional (1.6) to have a minimum at the point t = 0 for
the separating line �0 and is interpreted in Section 7 as equality of the jumps in the densities of the surface enthalpy
and the residual internal energy.

The last term in trinomial (1.9) is a quadratic functional of h, and the condition for it to have an extremum produces,
for the function h, the growth Eq. (4.10) on �0, so called by analogy with the equation describing the growth of the free
surface of a quasi-statically developing crack in a brittle elastic three-dimensional solid (see Refs. 4–6). We emphasise
that the data of the above-mentioned equation is found from the solutions u0 and û1 of problem (1.3)–(1.5) for the
composite body �0 for loads g0 and g1, while the pseudo-differential operator B occurring in it is expressed in terms
of the Steklov-Poincaré operators for disconnected bodies Ω±

0 and differential operations on the arc �0 (see Sections
5 and 2). As might have been expected, the terms t2g2 and t2γ±

2 of representations (1.1) and (1.8) do not participate in
the formation of the growth equation.

From the solution h = tĥ of the equation one can approximately determine the shape of the contour �t, or, more
accurately, the initial velocities ĥ(s) with which the points s ∈ Γ0 move along the normal directions. The error is O(t3),
and if it is desired to follow the development of the interface over a large range of variation of the time-like parameter,
one must use the proposed asymptotic constructions in a step-by-step mode (similar to the Peano method): the interval
(0, T) is divided into small intervals tN−1, tN and, using the solution hN−1 one determines the position of the interface
�N at the instant t = tN, at which new data on the growth equation are set up for the function hN.

In Section 6 we discuss the stability of the quasistatic development of the boundary �t within the framework of the
proposed asymptotic model. The conclusions reached on the basis of the asymptotic formulae from Sections 3 and 4
differ from those reached by other researchers (Refs. 7,8 etc.), based on an analysis of the stability of the equation
of the evolution of the interface, related to the attendant physical processes. If the parameter t is removed and it is
assumed that, in formulae (1.1) and (1.8),

(1.10)

the calculations will retain their meaning, allowing of the first and second variations of the functional (1.6) when the
interface is perturbed. The formula for the first variation does not differ from the existing ones (see Refs. 1–3 etc.), but
the expression for the second variation is simpler and clearer compared with that obtained previously,9,10 taking into
account the material derivatives of the functionals – the classical apparatus of the theory of shape optimization (see
Refs. 11,12 etc.).

2. Local coordinates

In the neighbourhood V of the line �0 we introduce a system of natural curvilinear coordinates (n, s), where n is the
distance to �0 and ∓n > 0 in Ω±

0 ∩ V , while s is the length of the arc on �0. For small t ≥ 0 the contour �t is defined
by the following equality, in which h(t;·) is a continuous function on the contour �0

(2.1)

Since the differential operator of the gradient in (n, s) coordinates has the form (∂n, D(n, s)−1∂s), the normal vector �
and the tangential vector � on �t are calculated from the formulae

(2.2)

Here D(n, s) = 1 + nκ(s) is the Jacobian, d = (1 + h′2D2)
1/2

is a normalizing factor and �(s) is the curvature of the
arc �0 at the point s. On the right-hand sides of equalities (2.2) the first term represents the projection of the vector
onto the direction n while the second term represents the projection onto the direction s. The components of the strain
tensor and the equilibrium equations in curvilinear coordinates are as follows:
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(2.3)

(2.4)

We will assign the functions h and their derivatives with respect to s the order t, i.e. we will use the relation

(2.5)

The quantity O(t2) in relations (2.5) is ignored in accordance with the assumption in Section 1 that the terms t2g2 and
t2γ±

2 from expansions (1.1) and (1.8) have no effect on the growth equation of interest. We will seek a solution of
problem (1.3)–(1.5) in the composite body �t with a regularly perturbed separation line in the form of the asymptotic
series

(2.6)

We will assign the term up(t;x) the order tp (p = 0, 1, 2, . . .). For brevity the argument t of the functions (2.1) and (2.6)
will henceforth be omitted.

We will remove the conditions, imposed on the basic contour �0, that there should be no jumps in the displacements
on the perturbed contour �t. To do this we will smoothly extend the field up± from the regions Ω±

0 to Ω∓
0 ∩ V and

expand them in Taylor series with respect to the variable n, which, in agreement with formula (2.1), we take equal to
h(t;s). As a result we obtain that on the arc �0 the following relation is satisfied with accuracy O(t3)

(2.7)

For similar processing of the jumps in the stresses we note that, according to expression (2.2), on the contour �t the
following equalities hold

Hence

(2.8)

(2.9)

Here σ
p
αβ are the stresses calculated on the displacements up. We emphasise that, thanks to relation (2.5), on the right-

hand sides of equalities (2.7)–(2.9) the first braces enclose quantities O(t) while the second braces enclose quantities
O(t2). Finally, the following expansions of the functionals from definition (1.6) correspond to ansatzes (2.6) and (1.1),
(1.8)

(2.10)
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(2.11)

In the calculation of (2.10) we have used the equality 2Et = Rt, which follows from definition (1.7) and Green’s
formula for the solution of problem (1.3)–(1.5), and in relation (2.11) the increments of the volumes of the phases
mes2(Ω±

t \Ω±
0 ) − mes2(Ω±

0 \Ω±
t ) are written as a repeated integral. Moreover, we have introduced the notation [γt] =

γ+
t − γ−

t etc. Note that the sum of the second terms from the right-hand sides of equalities (2.10) and (2.11) is identical
with the component tU(1)(h) of trinomial (1.9), while the sum of the third terms is identical with the component
t2U(1)(h).

3. The fundamental and second terms of the asymptotic form

It is clear that we must take the solution of problems (1.3)–(1.5) with interface �0 and load g0 as the fundamental
term u0 of ansatz (2.6). Since the data of the asymptotic form can be exactly transferred from the perturbed contour
�t to the basic contour �0, the second term u1 is also the solution of the problem for the composite body �0. The
equilibrium Eq. (1.3) in Ω±

0 , the boundary conditions (1.4) with right-hand side g1 and the inhomogeneous interface
conditions

(3.1)

in which p = 1, are satisfied for u1.
We emphasise that here and henceforth all the jumps are calculated precisely on the arc �0. The data on �1 and �1

in conditions (3.1) are found from the requirement for expressions (2.7)–(2.9) to vanish. The sum from the first braces
in relation (2.7) vanishes if ϕ1 = −[∂nu

0] = 0, i.e. according to formulae (2.3) and the equation [u0] = 0 we have

(3.2)

Analysing expansions (2.8) and (2.9) we obtain

We will convert these functions using the equalities D = 1 and [σ0
nn] = [σ0

ns] = 0 on the contour �0 and the equilibrium
Eqs. (2.4) in Ω±

0 ∪ Γ0 for the stresses σ0
αβ:

(3.3)

A unique solution of problem (1.3), (1.4), (3.1) with load g1 and with jumps (3.2) and (3.3) exists at the interface
�0. This solution can be represented in the form of a sum

(3.4)
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Here p = 1 and u10 is the solution for zero jumps on � while u11 is the solution when there is no load g1 on �. For the
second integral of relations (2.10) we derive the equality

(3.5)

The first term on the right is independent of the function h, which describes the perturbation of the contour. Integrating
by parts, we convert the last integral on the right-hand side of (3.5), using relations (3.2), (3.3) and (2.3)

(3.6)

Here and henceforth the functions continuous on �0 as a consequence of the matching conditions, will be written
without the superscripts ±.

According to the calculation of (2.11) and (3.5), (3.6) the sum

(3.7)

is the first variation of functional (1.6) when t = 0, i.e. for conditions (1.10) and for u10 = 0. Since it is assumed that, at
the instant t = 0, the interface occupies the position �0, variation (3.7) necessarily vanishes, and of course, in view of
the arbitrariness of the test function h, the following equality is satisfied

(3.8)

Note that, when equality (3.8) breaks down, functional (1.9) necessarily has no minimum for small t, since expression
(3.7) can be assigned any value O(t), specified in advance, by appropriate choice of the function h.

Simple algebra shows that relation (3.8) is equivalent to the usual thermodynamic condition at the interface (see
Refs. 1–3 etc.). We emphasise that, by virtue of the homogeneous conditions (1.5) on �0, the stresses σ0

nn, σ0
ns and the

strains ε0
ss are continuous on the contour �0, and requirement (3.8) can be formulated as follows:

Here [v] and v̄ = (v+ + v−)/2 are the jump and mean value of the function v on the contour �0.

4. The third term of the asymptotic form

The term u2 of ansatz (2.6) satisfies the interface conditions (3.1), where p = 2, while the right-hand sides, by
expansion (2.7), have the form

(4.1)
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Here, by formulae (2.3), (3.2) and (3.4) and conditions (3.1) for [u1], the following equalities hold

(4.2)

We emphasise that the functions (4.2) are independent of h and are determined from the solutions u0 ands u10 of
the problem for the composite body �0 with zero jumps on �0, while û1 is the solution of problem (1.3)–(1.5) for the
body �0 under the load ĝ = g1. Using formulae (2.4), (3.3) and (3.4) and conditions (3.1) for the jumps [σ1

nn], [σ1
ns],

we can convert the right-hand sides of the equalities [σ2
nn] = . . ., and [σ2

ns] = . . ., similar to (4.1), extracted from the
right-hand sides of Eqs (2.8) and (2.9), and hence arrive at the relations

(4.3)

Here, by the representations u10 = tû1 and σ10 = tσ̂1 the following quantities appear

(4.4)

In addition to the interface conditions (3.1) with the right-hand sides of (4.1) and (4.3) for the fields u2 and �2 the
equilibrium Eq. (1.3) and the boundary conditions (1.4) with the right-hand side g2 from formula (1.1) are satisfied. A
unique solution of this problem exists; it is continuous in �± up to the contour �0 and can be represented in the form
of the sum (3.4) with p = 2, where u20 = t2û2 and u21 are the solutions of the problem in �0 respectively with zero
jumps on �0 and zero external load on �.

Ignoring asymptotic terms that are independent of h in expansions (2.10) and (2.11), we can see that we need to
analyse the following sum

(4.5)

which is a quantity O(t2) and the component functional t2(U(2)(h) − U(2)(0)).
Repeating calculation (3.6) with obvious changes, we find that

(4.6)

We continue the calculations and obtain

(4.7)
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Here

(4.8)

and B is an operator, defined by the formula

(4.9)

in which H is the test function from C∞(�0), and the jumps [σ11
... ] and [ε11

... ], by definitions (3.2) and (3.3), are the
values of the linear operators on h. Consequently, the following estimate holds

The constant c depends on the fields σ0±|Γ0 and ε0±|Γ0 , Hooke’s tensors A± and the geometry of the boundaries ∂�

and �0.
Thus, the operator B performs the continuous mapping: Hl+1/2(Γ0) → Hl−1/2(Γ0), and Hm(�0) implies a Sobolev-

Slobodetskii space.
Now, by calculating and equating to zero the variation of the functional (4.5), we arrive at the following equation

on the contour �0

(4.10)

Its solution must be sought in the form (2.5) without the dots. Eq. (4.10) is called a growth equation, since its
solution, in accordance with formula (2.1), gives information on the quasistatic development of the interface.

5. The operator B

In order to construct the operator (4.9) and the conjugate operator B*, occurring in Eq. (4.10), we require new
notation, which, at first glance, seems strange (see Section 7 for an explanation). We will define the columns

(5.1)

where 21⁄2 is a normalizing factor and the superscript T is the sign of transposition. Note that the column �0, calcu-
lated from the solution u0 of problem (1.3)–(1.5) for a fixed interface, is continuous on the contour �0, while the
thermodynamic condition (3.8) can now be formulated as

(5.2)

Using Hooke’s law (1.2) for the stress and strain tensors in curvilinear coordinates, we obtain the relation between the
columns (5.1) on �0 and the side of the phase Ω±

0

(5.3)

The matrix functions Q±, continuous on the contour �0, are symmetrical and reversible but are not sign-definite due
to displacement of the positions �ss and �ss in formulae (5.1) (compare with the discussion in Section 7).

Further, the Steklov-Poincaré operators S± are necessary for elastic bodies �±. By specifying the displace-

ment columns ṽ± = (v±
n , 2−1/2v±

s )



on �0 they are made to correspond to the columns of the normal stresses
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ζ̃± = (σ±
nn, 21/2σ±

ns)



, taken on �0 and obtained from the solutions w+ and w− of the homogeneous equilibrium
equations in �± with the same sets of boundary conditions:

It is well known (see, for example, Refs. 13,14), that the mapping

(5.4)

is an isomorphism for any l ≥ 0 and is a classical elliptic pseudodifferential operator of the first order. Like the unbounded
operators in L2(�0)2 (compare mappings (5.4) for l = 1⁄2) the operators ± S± are closed self-conjugate and positive.
The last two properties arise, for example, from Green’s formulae

We mean by ε±(v±), σ±(w±) etc. the strain and stress fields obtained from the displacement vectors v± and w± in
Ω±

0 .
By virtue of relations (3.2) and (3.3), the interface conditions (3.1) for the fields u11± and �11± in the new notation

become

(5.5)

Here η̃ = (εnn, 21/2εns)



while 	 and 	* are formally conjugate differential operators acting in accordance with the
equalities

(5.6)

Bearing formulae (5.5) and (5.4) in mind, we successively obtain

We put

Both operators are symmetrical and, moreover, S• is positive and invertible (see the commentaries to formula (5.4)).
Since

taking definitions (5.6) into account we obtain that
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We will write the last two equations in matrix form

(5.7)

and note that the operators N± are mutually conjugate. By virtue of relation (5.3) we have

(5.8)

Substituting relations (5.8) into the integral identity (4.9), we find that

(5.9)

Consequently

(5.10)

Note that the operators ((5.9) and (5.10) act on the function h as follows: initially the expressions η0± = Q±ζ0 are
multiplied by h and only then are the operators N± employed.

Despite the symmetrical structure, the operator B + B*, generally speaking, is not sign-definite. The point is that
after introducing the column Y = (Y−+, Y++, Y−−, Y+−)
 with the scalar components

(5.11)

in accordance with equalities (5.7), the sum (5.10) takes the form

(5.12)

Here S−1⁄2• is the positive root of the operator S−1• and T is a numerical 4 × 4 matrix with the same eigencolumns Xj

and eigenvalues �j

The presence of the pairs of positive eigenvalues �1 and �2 and negative eigenvalues �3 and �4 denotes that the
operator (5.12) becomes positive or negative only for certain relations between the components (5.11). Nevertheless,
formula (5.12) is useful for calculating the ellipticity of the operator B + B*. Really by denoting the principal symbols
of the operators S± etc. by S±(s; 
) etc. at the point s ∈ Γ0, we obtain that

(5.13)

where Cj(s; 
) are the coefficients of the expansion

(5.14)
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while the principal symbol (5.14) of the operator (5.11) is equal to (i is the square root of −1)

Hence, the first-order operator (5.9) is elliptic on �0 if and only if expression (5.13) does not vanish for all ξ ∈ R\{0}
and s ∈ Γ0.

Unfortunately we were unable to invoke thermodynamic conditions (5.2) or (3.8) to investigate the properties of the
operators B or B + B*. The sole useful but trivial conclusion is that the columns �0 and Y in formulae (5.2) and (5.12)
cannot be zero.

6. The stability of the quasistatic process

Several different situations may arise when solving Eq. (4.10).

1◦. The growth equation has a unique continuous solution, which makes the functionalU(2)(h) reach a global minimum.
2◦. There is a family of continuous solutions, each of which makes the functional U(2)(h) reach a local minimum.
3◦. Continuous solutions exist, but at corresponding stationary points the functional U(2)(h) does not reach minimum

values.
4◦. The growth equation has no continuous solutions.

Case 1◦, in which a stable quasistatic evolution of the interface �t occurs, arises for the elliptic operator (4.10) and
for the following quadratic form that is positive-definite in the space H1/2(Γ0) × H1/2(Γ0)

(6.1)

The integral is understood as the duality between the spaces H1/2(Γ0) and H−1/2(Γ0) = H1/2(Γ0)∗.
Suppose now that the symbol (5.13) is negative, but the homogeneous growth equation has non-trivial solutions; in

particular the form (6.1) is not positive. According to the Fredholm alternative, the solution h of Eq.(4.10) only exists
if the following orthogonality conditions hold

(6.2)

where h(1), . . ., h(j) is the basis in the lineal L of the solutions of the homogeneous equation. If requirement (6.2)
is violated, situation 4◦ occurs, the quasistatic process becomes dynamic, and one is not justified in ignoring inertial
terms; in this case the invoking of the lower terms of the asymptotic expansions does not improve the situation, since
the refined growth equation becomes singularly perturbed (it contains a small parameter t in the higher derivative),
while the norm of the solution ĥ becomes infinitely large as t → +0 (ansatz (2.5) breaks down). If the conditions for
(6.2) to be orthogonal are satisfied, then, within the framework of situation 2◦ we must speak of possible bifurcations
of the interface (the solution h is determined apart from a term of the lineal L), but an investigation of the bifurcations
and the appearance among them of stable ones is not limited by an investigation of form (6.1) and requires additional
considerations.

The operator B + B* may be elliptic, and form (6.1) may be negative-definite. In other words, as previously, a unique
solution of Eq. (4.10) exists, but it makes the functional U(2)(h) reach a maximum, i.e. we have case 3◦, in which all
the positions of the inteface �t are in unstable equilibrium, and on changing from �0 to �t, t > 0, the quasistatic process
may spontaneously change into a dynamic one.

Eq. (4.10) may remain uniquely solvable even when the symbol (5.13) vanishes at several points of the contour �0.
However, in this case the solution ceases to be continuous (compare with situation 4◦), and the asymptotic analysis
becomes perhaps only formal (compare with Section 7 (1)). As usual, the breakdown of the asymptotic structures due
to the impossibility of establishing the smallness of the residues is related to attempts to give a quasistatic description
to a particularly dynamic process.
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We will digress from considering the quasistatic evolution of the interface, use limitations (1.10) and obtain the
functional U from formula (1.6) when t = 0. As already mentioned in Section 3, the first variation of this functional,
due to a small perturbation (2.1) of the contour �0, has the form (3.7). It is easy to check that the second variation is
identical with the integral

(6.3)

Hence, for the classical stability of the position �0 of the interface it is necessary for the quadratic form (6.1) to be
positive-definite.

7. Discussion

7.1. The requirements regarding the smoothness of the interface

The method of transferring data from a regularly perturbed boundary to a base, widely used in the mechanics
of curvilinear cracks (see Refs. 15–17 etc.), found justification in the book.18 It requires greater smoothness of the
boundary than the apparatus of material derivatives (see Refs. 11,2,12 etc.), but leads to clear and fairly simple formulae,
since canonical objects: Steklov-Poincaré operators, tangential gradients, curvatures, etc. are used, rather than “almost
identical” diffeomorphisms, always defined with considerable arbitrariness.

To ensure inclusion h ∈ Hl+1/2(Γ0) it is necessary that u0± ∈ Hl+3(Ω±
0 )

2
and σ±0 ∈ Hl+2(Ω±

0 )
2×2

. Here the contour
�0 must be of the class Cl+2. If l ≥ 2, then, using general results18 one can establish that the Hl−1(Ωt)2-norm of the
residue in representation (2.6) is estimated by the quantity ct4.

We emphasise that, when using the equilibrium Eq. (2.4), from the final formulae one must eliminate many normal
derivatives of the elastic fields, which happens to be useful for computational schemes, for example, in the method of
boundary integral equations. This was done in transformations (3.3), but in expressions (4.2) and (4.4) and later the
second normal derivatives of the displacements un and us remained without processing because, for arbitrary anisotropy,
extremely complicated expressions are obtained. The derivatives ∂nσ

0±
ss are not eliminated from the final expressions.

7.2. The surface enthalpy

Scalar products of the columns (5.1) appeared in many formulae – see, for example, (3.8), (4.6), (4.9) and (4.8).
Definition (5.1) has a physical background. The stresses �nn, �ns = �sn and the strains �ss at the interface among the
components of the stress and strain tensors turn out to be constrained – they cannot be assumed to be arbitrary due to
the interface conditions (1.5), and hence, instead of the density W of the elastic energy it is natural to take the state
function �, for which

(7.1)

The components of the column � are free at the interface. It is not difficult to obtain the required function from the
conservation of the linear Hooke’s law:

(7.2)

Since the change from W to � is made using the same rule as the change from energy to enthalpy, we can somewhat
freely call the form (7.2) the surface enthalpy.

When setting up the columns � and � the minus sign, which occurs in relations (5.3) and which ensures that the
matrix Q is symmetrical in relation (5.3), and the equations �ns = �sn, �ns = �sn are taken into account. It is easy to
show that the left-hand side of thermodynamic condition (5.2) is the jump [�] = �+ − �−.
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7.3. The surface energy

We will assume that the position of the interface �t is determined by minimizing the functional Ut + Ht , where the
term Ut has already been indicated in relations (1.6)–(1.8), while the term Ht is the surface energy, distributed along
�t with constant density � > 0,

(7.3)

We will denote the length of the arc �t by mes1�t. The addition to integrals (3.7) and (4.7) of terms from the right-hand
side of Eq. (7.3) leads to the following changes in the mathematical description of the quasistatic development of the
interface: the thermodynamic condition (3.8) takes the form

while the growth Eq. (4.10) converts to the following

(7.4)

The common factor t/2 has been shortened, and we have borne in mind representation (2.5). The occurrence of the
second derivative in integrodifferential Eq. (7.4) facilitates the stability, discussed in Section 6. In particular, any solution
h ∈ L2(Γ0) of Eq. (7.4) turns out to be continuous everywhere on �0 and hence situation 4◦, which requires a dynamic
formulation of the problem, is only possible when there are non-trivial solutions of Eq. (7.4) and the corresponding
orthogonality conditions (6.2) break down.

7.4. The non-locality of the stability condition

Representation (5.9) of the operator B, which occurs in expression (6.3) for the second variation of functional
(1.6) when t = 0, contains the Steklov-Poincaré operators (5.4), that are integro-differential and non-local in nature. In
particular, only the principal symbol (5.12) can be calculated for known Hooke tensors A±, the interface �0 and the
solution u0, since the compact components of the operator B + B* depend on the global characteristics: the shape of the
body � and the position of the arc 
, to which it is restrained. We will carry out the following mental experiment: we
will cut out from the body � a section �′, which does not intersect the subregion Ω+

0 , and we will apply to the newly
formed boundary the same normal forces njσ

0±
kj which arose in the body Ω+

0 ∪ Ω−
0 under the load g0. The elastic

fields do not change in the remaining part Ω+
0 ∪ (Ω−

0 \Ω′), i.e. the thermodynamic condition (3.8) (or (5.2)) remains
the same. At the same time the change in the operator B and the second variation (6.3), due to perturbation of the outer
boundary of the body, may radically affect the stability of the interface.

Acknowledgement

This research was supported financially by the Russian Foundation for Basic Research (03-01-00835).

References

1. Grinfel’d MA. Methods of Continuum Mechanics and the Theory of Phase Transitions. Moscow: Nauka; 1990.
2. Freidin AB. The approximation of small strains in the theory of phase transitions when elastic solids are deformed. In Research on Elasticity

and Plasticity. St Petersburg: Izd. SPb. Univ.; 1999; Vol. 18, pp. 266–90.
3. Osmolovskii VG. The Variational Problem of Phase Transitions in Continuum Mechanics. Izd. SPb Univ., St Petersburg, 2000.
4. Nazarov SA. The derivation of a variational inequality for the shape of a small increment of a tensile crack. Izv Akad Nauk SSSR MTT

1989;2:152–60.



S.A. Nazarov / Journal of Applied Mathematics and Mechanics 70 (2006) 416–429 429

5. Nazarov SA, Polyakova OR. The equivalence of the fracture criteria for a tensile crack in an elastic space. Izv Akad Nauk SSSR MTT
1992;2:101–13.

6. Kolton LG, Nazarov SA. Variation of the shape of the edge of a plane locally non-equilibrium tensile crack. Izv Akad Nauk SSSR MTT
1997;3:125–33.

7. Yeremeyev VA, Freidin AB, Sharipova LL. Centraly-symmetric two-phase strain fields. In Problems of the Mechanics of a Deformed Rigid
Body. St Petersburg: Izd. SPb Univ.; 2002, pp. 111–22.

8. Yeremeyev VA, Freidin AB, Sharipova LL. Non-uniqueness and stability in problems of the equilibrium of elastic two-phase solids. Dokl Ross
Akad Nauk 2003;391(2):189–93.

9. Kucher VA, Osmalovskii VG. Calculation of the second variation for the energy functional of a two-phase medium. Problems of Mathematical
Analysis, 22. Novosibirsk: Nauchnaya Kniga; 2001. pp. 41–73.

10. Osmolovskii VG. The necessary conditions for an extremum in the varitional problem of phase transitions with non-homogeneous boundary
conditions. Problems of Mathematical Analysis, 22. Novosibirsk: Nauchnaya Kniga; 2001. pp. 160–77.

11. Sokolowski J, Zolesio J-P. Introduction to Shape Optimization. In: Shape Sensitivity Analysis. Berlin: Springer; 1992. p. 250.
12. Delfour MC, Zolésio J-P. Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Philadelphia: SIAM series on Advances

in Design and Control; 1992, p 250.
13. Costabel M, Wendland W. Strong ellipticity of boundary integral operators. J für die Reine und Angewandte Mathematik 1986;372(1):S34–63.
14. Natroshvili DG, Chkadua OO, Shargorodskii YeM. Mixed problems for homogeneous anisotropic elastic media. Trudy Inst Prikl Mat Tbilisi

Gos Univ 1990;39:133–81.
15. Banichuk NV. Determination of the shape of a curvilinear crack by the small-parameter method. Izv Akad Nauk SSSR MTT 1970;2:130–7.
16. Cotterel B, Rice JR. Slightly curved or kinked cracks. Intern J Fracture 1980;16(2):155–69.
17. Movchan AB, Nazarov SA, Polyakova OR. The quasistatic growth of a semi-infinite crack in a plane containing small defects. C r Acad Sci

Paris Sér II 1991;313(11):1223–8.
18. Mazja WG, Nasarow SA, Plamenewski BA. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. V. 1.
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